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Abstract 

We present a general scheme for identifying hbrations in the framework of toric geometry and 
provide a large list of weights for Calabi-Yau 4-folds. We find 914 164 weights with degree d 5 I.50 
whose maximal Newton polyhedra are reflexive and 525 572 weights with degree d 5 4000 that 
give rise to weighted projective spaces such that the polynomial defining a hypersurface of trivial 
canonical class is transversal. We compute all Hodge numbers, using Batyrev’s formulas (derived 
by toric methods) for the first and Vafa’s fomulas (obtained by counting of Ramond ground states 
in N = 2 LG models) for the latter class, checking their consistency for the 109308 weights in 
the overlap. Fibrations of k-folds, including the elliptic case, manifest themselves in the N lattice 
in the following simple way: The polyhedron corresponding to the fiber is a subpolyhedron of that 
corresponding to the k-fold, whereas the fan determining the base is a linear projection of the fan 
corresponding to the k-fold. 

Subj. Clus.~: Strings 
1991 MSC: BIT30 
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1. Introduction 

It used to seem obvious from the critical dimension of superstrings and the apparent 
dimension of space-time that only complex manifolds with dimensions up to 3 play a role 
in string theory. The second string revolution, however, has changed this picture. It was 
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shown that strong coupling phenomena may increase the effective dimension of space- 
time to 11 dimensions [ 11, thereby providing a geometrical interpretation of a number of 
string dualities in the context of M-theory. Geometrization of the SL(2, Z) symmetry of 
type IIB strings may even lead to 12 dimensions [2]. Whether or not there are situations 
with an effectively 12-dimensional space-time, F-theory compactification already has an 
impressive record as a way to talk about compactifications of type IIB strings and providing 
the missing geometrizations of duality symmetries [2-51. In a related development, non- 
perturbative physics of three-dimensional compactifications seems to have the potential 
to teach us a lot about issues like SUSY breaking in four dimensions [4], which we may 
recover in some decompactification limit. 

For all these issues it is important to have a number of generic examples of Calabi- 
Yau 4-folds at one’s disposal and, in particular for applications in F-theory, to know 
how to identify elliptic fibrations in an easy way. The purpose of the present paper is 
twofold: On the one hand, we provide large classes of 4-folds in a systematic way. In 
addition we give a detailed discussion of the fibration structure in the toric context. From 
our experience with K3 fibrations [6] we expect that many families of toric Calabi-Yau 
hypersurfaces will have members that admit elliptic fibrations in appropriate regions of 
the quantum moduli space (or, in technical terms, for a triangulation of the fan 
that is compatible with the reflexive intersection in the N lattice that provides the 
fiber). 

Toric methods are known to physicists mainly because of the work of Batyrev [7], which 
appeared in a situation where it had become increasingly clear that complete intersections 
in products of (weighted) projective spaces were not general enough to grasp phenomena 
like mirror symmetry [8-l 11. In the context of toric geometry, which provides a natural 
extension of previous constructions, mirror symmetry manifests itself as the elementary 
duality (or polarity) of polytopes. The classification of toric Calabi-Yau hypersurfaces is 
equivalent to the enumeration of reflexive polytopes, a problem that can be stated in simple 
combinatorial terms. 

The link between the polytopes that generate the fan defining a toric variety and weights 
that admit transversal polynomials of appropriate degree for Calabi-Yau hypersurfaces in 
weighted projective spaces turned out to be very simple, at least in low dimensions: Just take 
the maximal Newton polytope (MNP), which consists of all exponent vectors of monomials 
whose degree is equal to the sum of weights. Its dual, which always contains a simplex that 
encodes the weighted projective space we started with, turns out to be integer for all MNPs 
in up to four dimensions, implying (by definition) that they are reflexive. In the case of 
four-dimensional hypersurfaces, however, we will see that only about 20% of our MNPs 
are reflexive. 

Even without transversality weight systems may lead to reflexive polyhedra in the way 
we just described, and any reflexive polyhedron is a subpolyhedron of an MNP defined by 
one or several weight systems. This observation is one of the keys to an approach for the 
classification of reflexive polyhedra [ 12,131. In the present context we used it to create large 
lists of weight systems that lead to reflexive polyhedra. Here the fact that transversality and 
reflexivity are pracitcally unrelated properties in more than four dimensions becomes even 
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more apparent. Among the 914 164 weight systems we constructed that lead to reflexive 
polyhedra, less than 1% allow for transversal polynomials! 

Fibrations provide a beautiful example of how algebraic structures in a toric variety 
manifest themselves in terms of linear structures in the N lattice. As we will see, we can 
identify the fiber as a variety corresponding to some subpolytope AEber of A:, and the base 
as a variety whose toric description is given in terms of a fan Cfiber that is a projection of Xcv 
along the direction of the sublattice supporting AGber. This makes it very easy to look for 
elliptic fibrations simply by looking for two-dimensional integer subpolytopes containing 
the interior point. An even simpler approach would start from a multiply weighted space 
such that one of the weight systems leads to the elliptic fiber. Let us also mention here that 
our approach is particularly useful for discussing the degeneration of fibers. 

In Section 2 we discuss the relation between weighted projective spaces and their toric 
varieties. We also present formulas and strategies for the calculation of Hodge numbers. 
In Section 3 we discuss toric fibrations and the toric description of the base manifold. In 
Section 4 we present our numerical results on weight systems leading to Calabi-Yau 4-folds. 

While we were finishing the present work there appeared a preprint [14] that partly 
overlaps with it. 

2. Weighted projective spaces vs. toric varieties 

We assume that the reader is familiar with basic notions of toric geometry, such as the 
definitions of cones and fans (see, e.g., [ 151 or [ 161). We use standard notation, denoting 
the dual lattices by M and N, their real extensions by MR and NR, and the fan in NR by C. 
To each one-dimensional cone in C with primitive generator uk we assign a homogeneous 
coordinate [ 171 zk, k = 1, . . N. From the resulting CN we remove the exceptional set 

zz = UN Z1) ( ziy): z; = 0. vi E 11. (1) 

where the union U, is taken over all sets I g (1, . . . , N) for which { Ui : i E I) does not 
belong to a cone in X. Then our toric variety Vc is given by the quotient of CN \ Zz. by a 
group which is the product of a finite abelian group and (C*)NPn acting by 

(N -II of these linear relations are independent). Whenever C is simplicial, the correspond- 
ing variety Vz will have only quotient singularities. 

Given a collection of positive integers (w’, . . , wn+’ ), called weights, there are two 
extreme ways of building a toric variety. In both cases one starts by taking n + 1 vectors ui in 
Rn such that any n of them are linearly independent and c wi v; = 0. A convenient choice is 

ui = ei, i = l,...,n, ’ kWiCZi v,+r = -- W”+l 
1 

(3) 

(or a multiple of these vectors). The A4 lattice is the lattice freely generated by the vi. 
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The weighted projective space Wp I (*, ,,,,, x,n+~j is the toric variety determined by the 
unique fan whose one-dimensional cones are VI, . . . , vn+l. The weights UJ~ define a grading 
of monomials by d(n$‘) = C wiai. For the construction of Calabi-Yau hypersurfaces 
one considers quasi-homogeneous polynomials of degree d = c wi A polynomial W is 
said to be transverse if the set of equations a W/azi = 0 is solved only by zi = 0 Vi. This 
condition ensures that the hypersurface has no singularities in addition to those coming 
from the singularities of the ambient space. These weight systems were classified for y1 5 4 
in [9,10]. 

A sigma model on such a singular variety may be constructed as a particular phase of the 
low energy limit of an N = 2 supersymmetric gauged linear sigma model [ 181. A gauged 
linear sigma model with a single gauge field always contains a Landau-Ginzburg phase. The 
numbers of chiral primary fields of a given charge in the N = 2 superconformal field theory 
that is the low energy limit of a gauged linear sigma model do not change when going from 
one phase to another. Therefore we can use Vafa’s formulas [ 191 for charge degeneracies 
in N = 2 superconformal Landau-Ginzburg models to calculate what mathematicians call 
“physicists’ Hodge numbers”. 

Another, a priori quite different approach, consists in considering the (maximal) Newton 
polyhedron A associated with the most general polynomial W of degree d = c Wi. This 
is just the convex hull of the points (al, . . . a,+]) in Zr2+’ determined by the exponents 
occurring in the monomials of W. By construction A lies in the hyperplane c wia; = d 
and contains the point 1 = (1, , 1). After changing to n-dimensional integer coordinates, 
with 1 + 0, we may identify the resulting lattice with the M lattice. If the origin 0 of M 
is in the interior of A (in this case we say that the weight system has the “interior point 
property”), the dual polyhedron 

A* = {p E NR: (y,x) > -1Vx E A) (4) 

is bounded. If, furthermore, all vertices of A* are in N, A is said to be reflexive. The integer 
generators ut , . . , U,+I of above may be identified with the points dual to the intersection 
of the planes XI = 0, . . , x,+1 = 0 with the hyperplane given by the degree condition 
(before the change of coordinates). vi. . , v,~+I are points, but not necessarily vertices of 
A*. If they are, then the coordinate hyperplanes correspond to facets (codim 1 faces) of A, 
i.e. the points of A affinely span these hyperplanes. In this case we say that a weight system 
has the “span property”. 

It was shown in [ 131 that transversality always implies the interior point property and 
that for II 5 4 the interior point property implies reflexivity. The fact that transversality 
implies reflexivity of A for n 5 4 had been checked by computer [20,21]. Note, however, 
that the proof of [ 131 also applies to the much larger class of all abelian orbifolds [ 1 I] and 
the MNPs on the respective sublattices that arise by dividing out phase symmetries that still 
admit transversal polynomials. 

Denoting the various sets of weight systems (in obvious notation) by T, I and R, the 
following relations between the different types hold: 
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n=2,3: T=I=R, 
II = 4: TcI=R, 
n > 4: T c I, R c I, no further relations. 

The statement T = I for n = 2, 3 is only known due to explicit constructions of the 
corresponding sets of 3 or 95 weights, respectively [ 13,221. In more than two dimensions 
the span property is independent of whether the weight system belongs to T, I or R. 

For a reflexive polyhedron A we now consider the fan C over some triangulation of the 
faces of A*. A Calabi-Yau hypersurface in VC is given by the zero locus of 

xtArlM k=I 

(3 

If 27 is defined by a maximal triangulation of A*, the generic hypersurface of this type is 
smooth for n ( 4 [7]. Also by [7], the Hodge numbers ht 1 and /~t,~-z are known, and in 
[23] the remaining Hodge numbers of the type h 1 i were calculated. For a hypersurface of 
dimension n - 1 1 3 these formulas can be summarised as 

hl; =Jli /(A*) --IZ - 1 - c I*@*) 
codimO*=l i 

+ &-2,; l(A) - n - 1 - c c I*(e*)l*(e) (6) 
codim B= I codimQ*=i+l 

for 1 5 i 5 n - 2, where 1 denotes the number of integer points of a polyhedron and 1* 
denotes the number of interior integer points of a face. For y1 5 4, the generic (n - l)- 
dimensional Calabi-Yau hypersurface in the family defined by A will be smooth and the 
meaning of these numbers is unambiguous. For n > 5, the Calabi-Yau variety may have 
singularities that do not allow a blow-up. In this case we refer the reader to Ref. [23] for a 
discussion of the precise meaning of the Hodge numbers resulting from Eq. (6). 

For Calabi-Yau 4-folds there is a linear relation among the Hodge numbers that has 
been obtained using index theorems in [ 14,241. The same relation can, in fact, be obtained 
as a simple consequence of a sum rule for charge degeneracies of Ramond ground states 
that has been derived from modular invariance of the elliptic genus for arbitrary N = 2 
superconformal field theories [25]: 

tr(-fJi = =$ctr(-)F = -&dX, (7) 

where JO is the (left-moving) U( 1) charge, c = 3d is the central charge and the trace extends 
over the Ramond ground states (we need to be careful with the sign of the Euler characteristic 
because the Hodge numbers h,, of the o model on a Calabi-Yau manifold and the charge 
degeneracies npq of Ramond ground states of charge (QL, QR) = (p - id, q - id) are 
related by h,,, = nd-,,,). For a Calabi-Yau manifold of arbitrary dimension this implies 

5 c-1 Pfq 

p,q=o 
(p - ;)2hp,q = -$t. (8) 
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In four dimensions this equation is equivalent to 

h22 =44+4hll -2h12+4h13. 

where we used PoincarC and Hodge duality of the Hodge diamond and omitted the contri- 
bution 20hu2 - 52hut on the RHS. that vanishes for toric Calabi-Yau hypersurfaces. For 
the Euler characterictic of 4-folds we thus find 

x = W3 + h1.1 - h1.2 + h1.3). (10) 

In two dimensions the above sum rule uniquely determines the Hodge diamond of the K3 
surface, whereas it is trivially satisfied (and therefore no so well-known) for CY 3-folds. 

As an example for different cases that can occur in different dimensions consider the 
weight system (1, . . . , 1, 2). The weighted projective space VVip( I_,,,, 1,~) can be represented 
by the vectors 

ut=(l,O ,.... 0) . . . . . &=(o . . . . . o.l),&+t=(-; ,..., -;, (11) 

in the lattice N consisting of points in iWn with coordinates that are either all integer or 
all half integer. Independently of n, VVp(t,....t,2) has precisely one pointlike singularity, 
located at zt = ... = zn = 0 and determined by the 772 quotient (zt , . . , zn+l) - 

(-z1,.... -z,, , zIl+l). In terms of toric geometry, this singularity corresponds to the fact 
that the simplex spanned by 0. VI, . . . , u,, has twice the volume of the unit simplex. This 
singularity can always be resolved by blowing up the singular point, i.e. by introducing an 
exceptional divisor (for a nice description of the blowup of orbifold singularities in a recent 
review for physicists, see [26]). In terms of toric geometry, this means that we subdivide 
the cone generated by ut , . . . , vn by adding an extra generator 

t&,+2 := (A,. . . . ;, = -&+I. (12) 

As we will see, however, the fan over A* does not necessarily correspond to this type of 
desingularisation. 

The M lattice can be identified with the integer points in Z” such that C xi = 0 mod 2. 
For even n, W can be chosen as the Fermat polynomial 

t1+2 z, +...+z, n+2 + z;72)12, 
(13) 

so that the maximal Newton polytope A is a simplex, whereas for odd n the vertex corre- 
sponding to ~$2~)‘~ (n+1)/2 is replaced by II vertices corresponding to expressions z,,+t zi with 
i = 1, . . , II. Let us now consider what happens for various values of n: 

n = 2: The vertices of A* are just ut , 212 and ~3. 214 is in the interior of the edge (facet) 

u1 u2. 
Whether we blow up VV/p(t ,I ,2) by the divisor corresponding to ~4 does not matter because 

this divisor does not intersect the hypersurface. 
II = 3: The monomials zizi correspond to a plane in the M lattice whose dual is vg. Thus 

I/C is the blow-up of VVip(t,t.t,z). 
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n = 4: Once again W is of Fermat type, but now u6 lies outside A*. The variety VC = 
VVP(t , I_ 1,1,2) has the Z2 singularity, but the generic hypersurface of degree 6 does not 
intersect it. The blow-up of MP’(t ,I, I_ 1.2) corresponds to a different reflexive polyhedron 
leading to a hypersurface with different Hodge numbers. 

II = 5: The monomials z& correspond to a plane in the M lattice whose dual is the 
point iu7 E NR which is not in N. A* is no longer reflexive. As there is no Fermat type 
monomial in z6, any degree 7 hypersurface in wp(t, I,I_I,~,~) intersects the singular point 
Zl =...=zg= 0. Vafa’s formulas give h 11 = 1, h 12 = 0 and h 13 = 455. They certainly do 
not correspond to the blow-up of M&P (t,t,t,t.1,2~.Whereastheconvexhull~*ofut ,..., u7 
is reflexive and the corresponding variety even smooth, I(a*) being 8, Eq. (6) tells us that 
h 11 = 8 - 6 = 2. We note, however, that Eq. (6) can be applied to non-integer polyhedra 
as well. In the present case the results of inserting A. A* into this formula coincide with 
those of Vafa’s formulas. We do not know whether this is always true. 

3. Fibrations 

The aim of this section is to give a general recipe for identifying fibrations of hypersurfaces 
of holonomy SU(n - 1) in n-dimensional toric varieties where the generic fiber is an 
(n’ - I)-dimensional variety of holonomy SU(n’ - 1). In other words, it will apply to 
elliptic fibrations of K3 surfaces, CY 3-folds, CY 4-folds, etc., to K3 fibrations of CY k- 
folds with k > 3, to 3-fold fibrations of 4-folds, and so on. The main message is that the 
structures occurring in the fibration are reflected in structures in the N lattice. The fiber, 
being an algebraic subvariety of the whole space, is encoded by a polyhedron A& which 
is a subpolyhedron of A&, whereas the base, which is a projection of the fibration along 
the fiber, can be seen by projecting the N lattice along the linear space spanned by A&. 
The details given in the following are somewhat technical; the reader is advised to check 
the various steps with some explicit example, e.g. the one given later. 

Assume that A* contains a lower-dimensional reflexive subpolyhedron A;iber = (Nfiber)R 
nA& with the same interior point. This allows us to define a dual pair of exact sequences 

and 

0 + Mbase + MCY -+ Mfiber -+ 0. (15) 

Using the same arguments as in [6], we can convince ourselves that the image of ACY under 
MCY + Mfiber is dual to AEber. Let us also assume that the image ?&se of ccv under 
n : Ncv + Nbase defines a fan in Nbase. This is certainly not true for arbitrary triangulations 
of A*. Constructing fibrations, one should rather build a fan _&,se from the images of the 
one-dimensional cones in Ccv and try to construct a triangulation of Ccv and thereby of 
Acy that is compatible with the projection. It would be interesting to know whether this is 
always possible whenever the intersction of a reflexive polyhedron with a linear subspace 
of NR is again reflexive. 
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The set of one-dimensional cones in &ase is the set of images of one-dimensional cones 
in .&-v that do not lie in Nfiber. The image of a primitive generator Ui of a cone in Ccy is the 
origin or a positive integer multiple of a primitive generator G,; of a one-dimensional cone in 

z&e. Thus we can define a matrix rj, most of whose elements are 0, through rr Ui = r! Uj 

with r/ E kJ if nui lies in the one-dimensional cone defined by Uj and Y/ = 0 otherwise. 
Our base space is the multiply weighted space determined by 

(iI>. . ( 2,) - p:;, ( . . . ( h%,), ,j=l,..., N-ii, (16) 

where the ti$ are any integers such that xi z$i’i = 0. The projection map from Vc (and, 
as we will see, from the Calabi-Yau hypersurface) to the base is given by 

Zi = l--p (17) 

This is well defined: zj + i,“‘:~j leads to Zi + h 
UJ’T! - 

k 1 ii which is among the good equiva- 

lence relations because applying 17 to C UI~ uj = 0 gives c UJ~$ Vi = 0. 
A generic point in the base space will have Zi # 0 for all i, implying Zi # 0 for all 

ui $ AEber. The choice of a specific point in L)c,,~~~ and the use of all equivalence relations 
except for those involving only Ui E Agber allows to fix all zi except for those corresponding 
to ui E Azber. Thus the preimage of a generic point in VC~,,~ is indeed a variety in the moduli 
space determined by Agber. 

What we have seen so far is just that Vz is a fibration over Vzhae with generic fiber Vzfihe, 
(this is actually the statement of an exercise on p. 41 of ref. [15]) and how this fibration 
structure manifests itself in terms of homogeneous coordinates. Now we also want to see 
how this can be extended to hypersurfaces. To this end note that if uk E Agber then (uk, x) 
only depends on the equivalence class [x] E Mfiber of x under 

X- 4‘ if X-.VEk&e. (18) 

Thus we may rewrite Eq. (5) as 

In each coordinate patch for VC,,~\~ this is just an equation for the fiber with coefficients that 
are polynomial functions of coordinates of the base space. 

There are two different occasions upon which the fiber may degenerate: The fiber being 
a hypersurface in VC~,,~~, it can either happen that Vztihcr itself degenerates or that the 
coefficients of the equation determining the fiber hit a singular point in the moduli space. 
While we do not know any way to read off the occurrence of the second case from the toric 
data, we can surely see the first case: Whenever a one-dimensional cone (with primitive 
generator vi) in _&se is the image of more than one one-dimensional cone in C, the fiber 
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becomes reducible over the divisor Zi = 0 determined by ui. Different components of the 
fiber correspond to different equations zj = 0 with n uj = t$Vi. The intersection patterns 
of the different components of the reducible fibers are crucial for understanding enhanced 
gauge symmetries [ 1,261 and deserve further study. 

Let us consider as an example the well-known class of Calabi-Yau hypersurfaces (3- 
folds) of degree 6n + 12 in VVlF’(t, t,n,2n+4,3,1+~) [27]. If 12,’ n is integer, the corresponding 
Newton polyhedron will be a simplex and the dual polyhedron A* can be described as the 
convex hull of the points 

(l,O,O,O), (O.l,O.O), (O,O,l,O), (O.O,O.l), (-l,-n,-2n-4.-3n-6) 

(20) 

in N 2 Z4. The elliptic fiber is determined by AEber with vertices 

(0, 0, l,O), (O.O,O, I), (O,O, -2, -3) in Nsber = N fl {XI = x2 = 0). (21) 

Of course it is just the torus given by the Weierstrass equation in MYP(1.2,3). The projection 
of N to Nbaae = N/Nfiber is realised as 17 : (xl, x2, xg, x4) + (XI, x2) (“throwing away 
the last two coordinates of each point”). A* gets projected to the convex hull of (l(O), 
(0, 1) and (- 1, -n). Each of these points provides a one-dimensional cone in C&e, which 
clearly is the fan of the Hirzebruch surface F” (compare, for example, with [ 15, p. 71). All 
other integer points are of the form (0. -1) with integer 0 5 1 5 in. They correspond to 
the one-dimensional cone generated by (0, - 1) and give examples for non-trivial values of 
the r” defined above. 

Let us get even more specific and consider the case n = 4. Neglecting four points in 
the interiors of facets of A* (the corresponding divisors do not intersect the Calabi-Yau 
hypersurface and are therefore irrelevant for the present discussion), we can arrange the 
integer points of A* according to their images 

u, := (1,O). 52 := (0, l), uj := (-1, -4), 54 := (0. -l), 0 := (0.0) (22) 

in Chase: 

nu= rCl forvt :=(l.O,O,O), 
nu = riT2 for u2 := (0, l,O, 0), 
nv = r& for 1)3 := (-1, -4, -12, -18), 

(23) nv = ri& for v4 := (0, -1, -3, -4), us := (0. -1, -4. -6). 
u6 := (0. -2, -6, -9). 

nu = 0 for u7 := (0. 0, 1, o), u8 := (0, 0, 0, I), u9 := (0, 0, -2, -3). 

The projection to the base is given by 

il = Zl, z2 = z2, 23 = z3, i4 = z4zsz;. (24) 

There are many linear relations among the ui. One of them is 2117 + 3Us + 219 = 0, ensuring 
that 

(ZI,..., Z6,Z7> Z8, Z9) - (Zl, . , Z6, h2Z7, h”Z8, k9). (25) 
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With respect to this relation, p is quasi-homogeneous of degree 6. With linear redefinitions 
of ~7, Zs, zg, one can bring p into Weierstrass form 

p = z; - z; + f(Zl, . . . zh)z7z; + g(z1.. .1 zfdz;. (26) 

Let us also briefly discuss strategies for finding fibrations. One strategy is to take reflexive 
polyhedra and look for lower-dimensional reflexive polyhedra that are contained in them. 
In particular, looking for elliptic fibrations, one might just intersect A* with any two- 
dimensional plane spanned by integer points of A*. Checking (i) pairs of points w.r.t. 
whether the plane spanned by them carries a reflexive subpolyhedron is no challenge to 
present day computer power, even for large numbers of polyhedra. 

An even simpler approach for constructing large numbers of fibrations could make use of 
the following observation: If A’, A” are reflexive polyhedra in lattices M’, M”, respectively, 
then 

A := A’ x A” = {(x’, x”): x’ E A’, x” E A”] 

is also a reflexive polyhedron. Its dual is 

(27) 

A* = ((hy’, (1 - h)y”): J’ E A’, y” E A”. 0 5 h 5 1) 

and the set C(k) of k-dimensional cones in C is given by 

C(k, = {(u’, u”): u’ E z?&. u” E C;;,,,. k’+ k” = k). 

(28) 

(29) 

Of course VC = l/c, x V-V, so VC is trivially a fibration. The equation p = 0 defines 
a Calabi-Yau (k - 1)-fold which may be interpreted either as a fibration with base VCJ 
and generic fiber a hypersurface in V,, or as a fibration with base V,U and generic fiber 
a hypersurface in Vrj. In this way one can immediately construct almost three million 
elliptic fibration 4-folds by combining one of the 16 two-dimensional reflexive polyhedra 
with reflexive polyhedra coming from one of the 184 026 weight systems of [ 131. 

For applications in the context of F-theory, we are usually interested in elliptic fibrations 
with sections. As we have seen, toric divisors whose corresponding rays do not project to 
0 are interpreted as fibers or components of degenerate fibers. Therefore among our toric 
divisors the only candidates for sections are determined by rays projecting to 0, i.e. by 
points u E Azber. These points have two interpretations: On the one hand, u determines a 
divisor in Vzilhrr and thereby, if it is a vertex of A&,,, a divisor &,er in the elliptic fiber, 
depending on the base point P. In the case of a curve, a divisor is just a formal sum of points 
on the curve. On the other hand, u may be interpreted as a point in A*, thus determining 
a divisor DCY in the Calabi-Yau hypersurface (unless u is interior to a facet of A*). Of 
course the intersection of Dcy with the fiber over a generic point P in the base space will 
give f&-r. Thus u will correspond to a section if &ber is a single point. This is the case 
under the following condition: Atber being a polygon with u one of its vertices, the dual 
II* E Afiber = (Azber)* of u is an edge of Afiber. Then &ber is a single point if u* has no 
interior point. Thus our fibration has a section if the polygon Afiber has an edge with no 
interior point. 
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To conclude this section, we remark that while the conditions we have given for the 
construction of fibrations are only sufficient and not necessary because of the possibility of 
non-toric structures, they seem to cover all examples given so far in the context of string 
dualities. 

4. Scans for 4-folds 

We performed systematic searches for the two different types of Calabi-Yau 4-fold 
models described by a single weight system as analyzed in Section 2. In both cases we 
used improved versions of the same basic strategy, namely to check for all partitions 
wl,...,wn+’ of d = 6,7. . whether they allow for transverse polynomials or reflexive 
polyhedra. 

For the transverse weights, the preselection that we imposed to reduce the number of 
partitions is, in the language of [28], “compatibility with at most one unresolved pointer 
to an unknown weight”. With this method we obtained the complete list of 525 572 weight 
systems of degree up to 4000. Based on the statistics given in Table 1 we cannot give an 
estimate of the total number, since 2 x 1 05/d is a good approximation to the average number 
of transversal weights per degree, which would lead to a divergent sum. It is well known, 
however, that this set is finite [28]. A complete enumeration is impossible with our present 
approach (this can be inferred from the rate at which our program slows down with growing 
d and the fact that the degrees of the 3462 Fermat weights range up to d = 326 3442) but 
the numbers in Table 1 do not seem to exclude the possibility of a complete classification 
along the lines of Refs. [9,10]. 

The situation is quite different for 4-folds coming from reflexive weights, which are far 
more numerous. Here we are limited by disk space rather than by calculation time. We 
have the complete list of 914 164 weights with degree d 5 150, only 6918 of which are 
transversal. Together with the weights that are both transversal and reflexive we have thus 

Table I 

d Trans. Ref. d Trans. Ref. d Trans. Ref. d Trans. Ref. 

100 I I 798 3578 1100 18333 3917 2100 11328 2292 3100 6765 1208 
200 28 457 6685 1200 16351 3261 2200 9694 1773 3200 7449 I369 
300 31075 6716 1300 14427 3045 2300 8944 1627 3300 6811 1300 
400 29 229 6163 1400 15 334 3196 2400 10807 2314 3400 6476 1282 
500 26 792 5798 1500 12907 2450 2500 7385 1352 3500 6209 1230 
600 26 578 5649 1600 13 570 2164 2600 9190 1897 3600 6597 I329 
700 22 361 4665 1700 12432 2454 2700 8470 1700 3700 6061 1218 
800 22 139 4725 1800 11594 2400 2800 8134 1618 3800 6288 1249 
900 20 704 4478 1900 11030 2118 2900 7975 1523 3900 5394 IO46 

1000 17475 3605 2000 10273 1961 3000 6827 1248 4000 5903 1105 

236614 52 062 136251 27 566 88 754 17344 63 953 12336 

There are 109 308 reflexive weights among the 525 572 transversal weights with d 5 4000 
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d R RT T d R RT T d R RT T 

10 9 8 11 60 11489 490 1480 110 84 095 509 2235 
20 164 63 109 70 19046 375 1397 120 114038 955 3482 
30 835 209 422 80 30 141 586 2030 130 137 806 456 2005 
40 2485 252 684 90 45815 744 2529 140 178688 656 2845 
50 5124 356 1093 100 62 779 495 2043 150 220 33 I 764 3070 

c 9217 888 2319 c 169 876 2690 9479 c 734958 3340 13637 

There are 9 14 05 1 reflexive, 69 18 reflexive and transversal, and 25 435 general transversal weights with 
d 5 150. 

Table 3 
Negative values of the Euler number (the value x = -30 only occurs for non-reflexive weights) 

-6 -12 -18 -24 -30 -36 -42 -48 -60 -66 -72 
-84 -90 -96 -120 -132 -138 -144 

-168 -180 -192 -198 
-240 -252 

Table 4 
Numbers of weights with small I 5 h 11 5 5 or 1 5 h 1.3 5 5 in the list of all reflexive weights with d 5 150, 
and reflexive (RT) or general (T) transversal weights with d 5 4000 

hll RISO RT4ooo T4000 hi3 RISO RT4ooo T4m 

1 8 8 33 1 _ 6 33 
2 33 27 106 2 _ 24 132 
3 101 66 255 3 _ 44 196 
4 168 88 411 4 _ 48 304 
5 267 111 508 5 _ 66 354 
6 501 183 800 6 _ 133 533 
7 617 158 789 7 5 95 486 

accumulated more than lo6 reflexive weights. Various sublists, as well as the files with the 
complete results are available on the intemet. * 

A central goal of our computer studies was to investigate the relation between transver- 
sality and reflexivity of the maximal Newton polyhedra. Whereas transversality always 
implies reflexivity in up to four dimensions, it turned out that only about 20% of the five- 
dimensional polyhedra defined by our transversal weights are reflexive. This number shows 
only little dependence (in the form of a slight decrease) on the degree. Since the gauged 
linear CJ models based on these weights have a Landau-Ginzburg phase we could use Vafa’s 
formulas to compute all charge degeneracies of Ramond ground states. For the 109 308 re- 
flexive weights in this class we could thus check the coincidence of these numbers with 
Batyrev’s result for the cohomology of the Calabi-Yau hypersurfaces in the toric varieties 

2 The URL is http://tph.tuwien.ac.at/ -kreuzer/CY. 
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Weights for 4-folds with negative Euler number and d 5 IS0 

IO 7 7 7 I3 17 19 84 
17 7 7 7 17 10 20 93 
80 5 5 5 I4 22 2’) 199 
80 5 5 5 I6 IX 31 199 
80 IO I3 I3 13 IS I6 38 
84 7 7 7 I2 18 33 I33 
84 II II II 12 I8 21 43 
85 5 5 5 16 23 31 214 
85 5 5 5 17 21 32 214 
88 8 8 8 19 22 23 93 
88 8 II I2 19 19 19 34 
90 5 5 5 IX 24 33 231 
90 7 7 7 19 20 30 84 
90 Y Y 9 10 I6 37 II3 
90 Y 9 9 I3 20 30 84 
90 Y 9 9 I4 I’) 30 84 
90 Y 9 9 I7 22 24 81 
90 9 IO 14 IY I9 19 48 
90 Y I2 13 I3 I3 30 5s 
90 II II II IS IX 24 42 
91 II I3 I3 I3 I6 2.5 5s 
92 7 I 7 22 23 26 84 
95 IO 13 IS I9 19 19 42 
96 I 7 7 I9 24 32 93 
96 7 12 I9 I9 19 20 42 
96 8 II I9 I9 19 20 12 
98 7 7 I4 20 24 26 79 
99 7 7 7 22 23 33 93 
99 Y Y 9 17 22 33 93 
99 Y Y 9 I9 20 33 93 
99 Y 9 9 19 23 30 93 
99 9 IO 19 IY I9 23 41 
99 Y I1 11 II IS 42 108 
YY 9 II 19 20 20 20 31 
99 Y I4 I4 I4 IS 33 54 

100 7 7 7 23 25 31 93 
102 6 6 6 I7 32 3.5 214 
102 Y I2 I7 I7 17 30 56 
102 12 I7 I7 17 IX 21 44 
104 8 13 20 21 21 21 39 
105 7 7 14 24 26 27 85 
105 7 IS I7 22 22 22 4s 
10.5 IO IS I7 21 21 21 42 
105 II I5 IS I5 21 28 55 
108 7 7 7 24 27 36 104 
110 5 5 10 22 26 42 184 
110 Y 15 20 22 22 22 44 
110 10 I1 21 21 21 26 41 
II0 10 1.5 I9 22 22 22 42 
110 I1 II 16 20 22 30 s2 

V F v 171 I 

8 38 7 26 
8 38 7 26 
8 42 7 24 
8 42 7 24 
6 48 6 3X 
6 38 6 22 
6 38 6 28 
8 42 7 24 
8 42 7 24 
8 38 7 26 
9 70 8 63 
6 42 6 22 
8 38 7 26 
6 39 6 22 
8 3X 7 26 
8 38 I 26 
8 38 7 26 
6 75 6 65 
I 3x I 27 
6 42 6 30 
9 34 8 23 
8 38 I 26 

IO 37 Y 30 
8 38 7 26 

IO 84 9 7s 
9 16 8 69 
8 3Y 7 27 
8 38 7 26 
8 38 7 26 
8 38 I 26 
8 3x 7 26 
9 91 8 81 
6 42 6 24 
9 91 8 81 
6 42 6 29 
8 3X 7 26 
8 42 7 24 
8 34 8 25 
I 34 7 26 
6 93 6 83 
9 42 10 30 

I2 84 9 74 
9 37 8 30 
9 34 8 23 
6 38 6 23 
8 43 7 25 
9 47 8 36 
9 91 8 81 
9 31 8 30 
9 34 8 24 

11 I2 1’13 1’22 

I ox 72 220 
I35 81 202 
210 171 428 
210 177 428 

96 26 108 
I65 Ill 246 
91 31 98 

240 192 428 
240 I92 328 
I.15 Xl 202 
I08 2’) I96 
272 209 324 
I08 72 220 
144 91 208 
108 72 220 
108 73 220 
I08 72 220 
108 33 220 
92 42 136 

IO1 30 82 
90 43 128 

108 72 230 
72 30 140 

I35 81 202 
126 27 200 
108 27 212 
108 69 212 
135 81 202 
135 81 202 
135 81 202 
I35 81 202 
I35 26 202 
141 85 19X 
I35 26 202 
I02 41 I20 
I35 81 202 
240 192 428 

82 43 IS2 
XI 32 I I4 

147 24 178 
126 74 208 
126 30 208 
72 30 140 
90 43 I28 

165 92 174 
200 I65 404 

90 32 136 
135 26 202 
72 30 140 
80 42 148 

X 

-12 
-120 

-6 
-6 

-144 
-144 
-144 

-Y6 
-96 

-120 
-48 

-198 
-12 

-138 
-12 
-12 
-12 
-12 
-90 

-198 
-96 
-12 
-24 

~ I20 
-96 
-24 
-24 

-120 
-120 
~ I20 
-I20 
~ 120 
-143 
-120 
-144 
-120 

-96 
-36 
-90 

-192 
-84 
-84 
-24 
-96 

-252 
-12 
-84 

-120 
-24 
-36 
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Table 5 
Continued 

d U'l 

112 7 7 I4 I6 24 44 
112 7 16 20 23 23 23 
112 8 I3 21 21 21 2x 
112 II II I6 22 24 28 
II4 6 I4 19 2s 2s 25 
114 9 IS I9 I9 I9 33 
114 IS IX I9 19 I9 24 
115 5 5 IO 22 31 42 
115 s 5 I 0 23 29 43 
I IS IO IS 21 23 23 23 
120 5 5 IO 24 32 44 
120 7 7 I4 22 30 40 
I20 8 8 16 27 30 31 
120 8 I4 IS IS IS 5.1 
I20 8 IS 23 23 23 28 
I20 IO I7 I7 IX 24 34 
120 II II 20 22 24 32 
120 I2 I3 I3 I6 26 40 
I21 IO II 21 21 21 37 
I25 4 I3 2s 2s 25 33 
I26 9 9 18 20 28 42 
I26 9 9 I8 22 26 42 
126 II II II I4 I6 63 
126 I3 I3 IX 21 26 3s 
I28 7 7 I4 30 32 38 
I30 7 7 7 I8 26 65 
I30 IO IO 13 20 24 53 
132 7 7 I4 27 33 44 
132 8 8 8 31 33 44 
132 II II I2 20 22 56 
I32 II I2 23 23 23 40 
I32 I2 I2 I2 I9 33 44 
132 I2 12 I2 23 33 40 
I32 I2 I3 I3 I3 IS 66 
132 I2 IS 22 22 22 39 
I32 I2 I7 I7 22 30 34 
133 7 7 21 31 33 34 
I34 7 7 7 22 24 67 
I35 4 IS 27 21 27 35 
I35 7 7 I4 30 32 4s 
135 9 9 IX 26 31 42 
135 I5 IY 20 27 27 27 
I36 7 7 I4 31 34 43 
I36 8 8 8 21 23 68 
136 I6 I7 I7 24 28 34 
138 6 6 I2 23 44 47 
I38 6 22 23 29 29 29 
140 s I3 28 2X 28 38 
I40 7 7 20 21 30 s5 
I40 IO I9 I9 26 28 38 

wj w 

I19 
42 
42 
39 
53 
55 
43 
194 
I94 
42 

206 
79 
8.5 
III 
39 
39 
3X 
SO 
41 
X7 
79 
79 
II3 
34 
79 
199 
100 
85 
93 
97 
38 
93 
93 
I08 
54 
34 
90 
199 
x7 
85 
85 
3X 
8.5 

213 
40 
194 
49 
83 
I23 
38 

6 39 6 23 147 100 242 -96 
9 92 8 Xl 144 27 I88 -168 
9 76 8 69 108 27 212 -24 
6 39 6 29 82 29 II? -Y6 
IO 88 9 77 I35 38 234 -72 
7 3X 7 27 92 42 I36 -90 
7 38 7 2X 91 31 98 -144 
9 45 Y 27 220 174 408 -66 
9 4s 9 27 220 174 408 -66 
9 37 8 30 72 30 I40 -24 
6 43 6 23 242 I87 400 -144 
8 39 7 27 I08 69 212 -24 
Y 42 IO 30 I26 74 208 -84 
6 49 6 29 147 X6 210 -144 
6 Y3 6 X3 147 24 I78 -192 
I 57 7 47 92 29 164 -4X 
6 43 6 31 91 28 98 -144 
7 39 7 28 83 39 146 -48 
9 91 8 81 13.5 26 202 -120 
IO 72 8 56 144 68 252 -72 
8 3') 7 27 I08 69 212 -24 
8 30 7 27 108 69 212 -24 
6 39 6 22 144 91 208 -138 
8 55 9 43 90 23 I28 -96 
8 39 7 27 I08 69 212 -24 
8 42 7 24 210 177 428 -6 
Y - 9 26 I20 80 228 -36 
9 42 IO 30 126 74 208 -84 
8 3X 7 26 135 81 202 -120 
6 43 6 25 126 77 200 -96 
6 104 6 92 16.5 23 174 -252 
8 38 7 26 I35 81 202 -120 
8 38 7 26 135 81 202 -120 
6 42 6 24 I41 85 I98 -144 
6 42 6 29 102 41 120 -144 
6 62 6 52 100 24 I48 -96 
8 49 7 37 I35 78 234 -72 
8 42 7 24 210 177 428 -6 
IO 72 X 56 144 68 2.52 -72 
Y 42 IO 30 126 74 208 -84 
9 42 IO 30 126 74 208 -84 
6 4X 6 38 96 26 I08 -144 
9 42 IO 30 126 74 208 -84 
8 42 7 24 240 192 428 -96 
7 35 7 27 73 30 126 -48 
9 45 9 27 220 174 408 -66 
6 104 6 91 165 34 214 -192 
6 X3 6 64 I68 64 220 -192 
7 49 I 32 IS0 102 280 -48 
6 64 6 52 104 28 IS6 -96 
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d WI W? x13 w4 w5 lJ,$ P V F v hll h12 h13 h22 x 

140 II 11 20 30 33 35 40 7 49 7 39 83 28 146 -48 
140 20 20 20 21 24 35 51 8 - I 27 90 39 128 -96 
142 7 7 7 23 21 71 214 8 42 7 24 240 192 428 -96 
143 10 13 13 19 26 62 98 10 - 10 31 120 76 232 -30 
144 7 I 14 32 36 48 93 6 39 6 24 147 83 178 -192 
144 9 9 18 28 32 48 93 6 39 6 24 147 83 178 -192 
144 9 16 16 21 34 48 57 6 63 6 48 114 42 176 -96 
144 16 16 18 21 32 41 48 8 - 9 27 84 37 132 -72 
144 16 17 17 18 34 42 33 6 69 6 57 112 23 140 -144 
145 5 5 15 28 39 53 204 8 54 I 35 232 183 452 -36 
145 5 5 15 29 37 54 204 8 54 7 35 232 183 452 -36 
145 5 14 29 29 29 39 83 6 83 6 64 168 64 220 -192 
150 7 7 7 24 30 75 231 6 42 6 22 272 209 424 -198 
150 IO 14 17 17 17 75 Ill 6 49 6 29 147 86 210 -144 
150 II 11 25 30 33 40 39 7 54 7 42 92 27 136 -90 
150 13 13 15 20 39 50 51 8 49 8 38 85 38 178 -6 
150 21 24 25 25 25 30 42 6 42 6 30 101 30 82 -198 

Degrees of reflexive and transversal weights are in boldface, V and 7 denote the numbers of vertices of 
A and A*, and non-reflexive weights have no entry for the number p of lattice points of A*. 

defined by the reflexive polytopes. The subtle connections between the two types of Hodge 
numbers are discussed in [23]. Going from the weighted projective space to the variety 
defined by a maximal triangulation of the reflexive polyhedron we do not resolve all of the 
singularities of the ambient space. As we saw in our example at the end of Section 2, even 
in cases when there exists an “obvious” way of blowing up the embedding variety, this need 
not be the one leading to the same Hodge numbers. 

After the general statistics of transversal and reflexive weights is Tables 1 and 2 we 
provide lists of weights that may be of particular interest because of small Hodge numbers 
htt or ht3, or because of a negative Euler number, which is desirable in the context of 
SUSY breaking [4]. In Table 3 we give the possible negative Euler number that arise in 
our lists. The value x = -30 only occurs for non-reflexive weights, and our smallest value 
x = -252 (which is not divisible by 24) occurs at degree 108 in the reflexive case and only 
at degree 484 in the transversal case. In Table 4 we give the numbers of weights of various 
types that we find with h 11 5 7 or ht3 5 7. In Table 5 we give all 30 transversal and 113 
reflexive weights with x < 0 and d 5 150; there is an overlap of 26 weights in this table 
that are both reflexive and transversal. Up to degree 4000 we found 174 more transversal 
weights with negative Euler number, so that altogether we have 291 weights with x c 0 
(the smallest values of h 11 and h 1s in this list are both 22). 

In Tables 6 and 7 we list all our weights with h 11 = 1 or h 13 = 1; Fermat weights all have 
x > 0 and do not contribute to any of our tables of special weights, except for 8 weights 
with 6 5 d 5 18 that give ht 1 = 1. Some “first occurrences” are: 
_ The first non-reflexive transversal weight system is (1, 1. 1, 1, 1, 2). 
_ The first non-transversal reflexive weight system is (1, 1. 1, 1, 1. 3). 
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Weights for 4-folds with hll = 1 (for reflexive A this implies V = 7 = 6) 

6 I I 1 1 1 
7 1 1 1 1 1 
8 1 1 1 1 2 
9 1 1 1 1 2 

10 I 1 1 1 1 
10 1 1 1 2 2 
12 1 1 1 1 2 
12 1 1 1 2 3 
12 1 1 2 2 3 
14 1 1 1 2 2 
15 1 1 2 3 3 
16 1 1 1 2 3 
16 1 1 2 3 4 
18 I 1 2 2 3 
18 1 2 3 3 4 
20 1 2 3 4 5 
21 1 I 3 4 5 
21 1 2 3 3 5 
22 1 1 2 3 4 
22 1 2 3 4 5 
24 2 3 3 4 5 
26 1 2 2 3 5 
28 I 1 3 4 5 
28 1 3 4 5 7 
30 1 2 3 4 5 
30 2 3 4 5 1 
36 1 2 3 5 7 
40 1 3 4 5 7 
42 2 3 4 5 7 
42 4 5 6 7 9 
46 I 4 5 6 7 
50 2 3 5 7 8 
60 3 4 5 7 II 

1 462 6 7 
2 496 10 - 
2 483 6 7 
3 575 10 - 
5 1128 6 8 
3 489 10 - 
6 1167 6 8 
4 603 6 7 
3 407 6 7 
7 1081 6 8 
5 492 10 - 
8 1226 9 - 
5 509 13 - 
9 984 6 8 
5 309 14 - 
5 314 10 - 
7 564 12 - 
7 378 13 - 

II 1095 12 - 
7 358 20 - 
1 187 13 - 

13 855 12 - 
14 1148 12 - 
8 300 17 - 

15 759 9 ~ 
9 189 16 - 

18 896 13 - 
20 685 14 - 
21 418 13 - 
11 93 19 - 
23 599 19 - 
25 419 17 - 
30 316 14 - 

6 1 
7 1 
6 1 
7 1 
6 1 
7 1 
6 I 
6 1 
6 1 
6 1 
I 1 
7 1 
9 1 
6 1 
9 1 
7 1 
9 1 
8 1 
8 1 

13 1 
9 1 
8 1 
8 1 

13 1 
7 1 

12 1 
10 1 
10 1 
9 1 

16 1 
13 I 
12 1 
11 1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

426 1752 2610 
455 1868 2784 
443 1820 2712 
523 2140 3192 
976 3952 5910 
447 1836 2736 

1009 4084 6108 
547 2236 3336 
373 1540 2292 
935 3788 5664 
441 1836 2736 

1059 4284 6408 
463 1900 2832 
851 3452 5160 
283 1180 1152 
287 1196 1776 
511 2092 3120 
343 1420 2112 
946 3832 5730 
326 1352 2010 
171 732 1080 
739 3004 4488 
991 4012 6000 
273 1140 1692 
656 2672 3990 
172 736 1086 
773 3140 4692 
591 2412 3600 
361 1492 2220 

84 384 558 
517 2116 3156 
361 1492 2220 
271 1132 1680 

_ The first degree that does not admit any weight that is transversal and reflexive is 11. 
_ The first degree for which no transversal weight system exists is 1733 (there are only 29 

such degrees d in the range d I 4000). 
When looking for models with very specific features it may be useful to go beyond the 

class of models considered here. In particular if we are interested in elliptic fibrations it will 
be more ecomonic to generate reflexive polytopes in terms of combined weight systems 
[ 121 since the complete set of relevant weights is already known [ 131 and the fibrations 
structure is encoded (and can be pre-selected) in a rather simple and explicit way. Note 
also that the three million elliptic fibrations that were mentioned at the end of the last 
section are known to be all connected in a web with singular transitions that respect the 
fibration structure because the same is true for the polytopes of which we are taking direct 
products [29]. 
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Table 7 
Weights for 4-folds with h 13 = 1 (in this case all polytopes are simplices) 

d UII 11 I I h I2 

2415 105 230 279 462 534 805 7 6 ~ 6 273 0 
2484 96 265 276 597 621 629 7 6 - 6 273 0 
2520 180 215 336 364 585 840 7 6 ~ 6 283 0 
2565 105 194 410 431 570 855 7 6 ~ 6 326 0 
2700 123 240 263 540 675 859 7 6 - 6 273 0 
2700 270 300 369 475 486 800 7 6 407 6 373 0 
2777 335 395 397 407 476 767 7 6 - 6 455 0 
3024 268 336 384 467 689 880 7 6 - 6 447 0 
3108 123 279 296 597 777 1036 7 6 ~ 6 273 0 
3120 240 260 481 576 715 848 7 6 - 6 447 0 
3125 434 500 520 521 525 625 7 6 462 6 426 0 
3216 171 237 536 609 670 993 7 6 - 6 463 0 
3234 385 390 474 539 552 894 7 6 - 6 455 0 
3240 391 407 450 540 558 894 7 6 - 6 455 0 
3240 396 397 461 474 648 864 7 6 ~ 6 455 0 
3241 391 461 463 475 556 X95 7 6 - 6 455 0 
3276 396 403 455 546 576 900 7 6 - 6 455 0 
3360 240 260 517 672 775 896 7 6 - 6 447 0 
3432 184 312 429 655 812 1040 7 6 - 6 463 0 
3456 150 415 432 551 756 1152 7 6 - 6 343 0 
3528 387 432 504 588 637 980 7 6 483 6 443 0 
3528 432 441 504 516 631 1004 7 6 483 6 443 0 
3582 350 404 454 597 782 995 7 6 ~ 6 523 0 
3584 392 448 456 467 782 1039 7 6 - 6 523 0 
3600 352 450 464 525 784 1025 7 6 - 6 523 0 
3696 184 336 439 693 924 1120 7 6 - 6 463 0 
3750 521 600 624 625 630 750 7 6 462 6 426 0 
3780 268 420 480 567 945 1 100 7 6 - 6 447 0 
3780 335 420 480 689 756 1100 7 6 - 6 447 0 
3780 391 525 540 630 651 1043 7 6 ~ 6 455 0 
3780 461 462 540 553 756 I008 7 6 - 6 455 0 
3888 288 400 436 605 863 1296 7 6 ~ 6 447 0 
3960 360 396 400 890 891 1023 7 6 603 6 547 0 

‘1 13 1122 x 

1 
I 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
I 
I 
1 
1 
1 
1 
1 
1 
1 
I 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1140 1692 
1140 1692 
1180 1752 
1352 2010 
1140 1692 
1540 2292 
1868 2784 
1836 2736 
1140 1692 
1836 2736 
1752 2610 
1900 2X32 
1868 2784 
1868 2784 
1868 2784 
1868 27x4 
1868 2784 
1836 2736 
1900 2832 
1420 2112 
1820 2712 
1820 2712 
2140 3192 
2140 3192 
2140 3192 
1900 2832 
1752 2610 
1836 2736 
1836 2736 
186X 27X4 
1868 2784 
1 X36 2736 
2236 3336 

Acknowledgements 

This work is supported in part by the Austrian Research Funds FWF (SchrGdinger fel- 
lowship J012328-PHY), by the Austrian National Bank under grant no. 5674 and by NSF 
grant PHY95 1 1632, the Robert A. Welch Foundation. We would like to thank P. Candelas, 
C. Caris, J. Louis, T. Mohaupt, E. Perevalov and R. Schimmrigk for discussions. 

References 

[I] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85, hep-th/9503124. 
[2] C. Vafa, Evidence for F theory. Nucl. Phys. B 469 (1996) 403, hep-th/9602022. 



M. Kreuzec H. Skarke/Jmrnal of Geometry and Physics 26 (1998) 272-290 289 

[3] D.R. Morrison and C. Vafa, Compactification of F-theory on Calabi-Yau 3-folds I/II, Nucl. Phys. B 
473 (I 996) 74, hep-th 9602 114; Nucl. Phys. B 476 ( 1996) 437, hep-th/9603 16 I ; 
M. Bershadsky, K. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa, Geometric singularities 
and enhanced gauge symmetries, Nucl. Phys. B 48 1 (1996) 2 15, hep-th/9605200; 
P. Candelas, E. Perevalov and G. Rajesh, F-Theory duals of nonperturbative heterotic Es x Es vacua 
in 6 dimensions, hep-th 9606133. 

[4] E. Witten, Non-perturbative superpotentials in string theory, hep-th 9604030; 
R. Donagi, A. Grassi and E. Witten, A non-perturbative superpotential with Es-symmetry, Mod. Phys. 
Lett. A 1 1 (I 996) 2 199, hep-th 9607091; 
S. Kachru and E. Silverstein, Singularities, gauge dynamics, and non-perturbative superpotentials in 
string theory, B 482 (I 996) 92, hep-th 9608 194; 
P. Mayr, Mirror symmetry, N = I superpotentials and tensionless strings on Calabi-Yau four-folds, 
hep-th/96 IO 162. 

[S] I. Brunner, M. Lynker and R. Schimmrigk, Unification of M theory and F theory Calabi-Yau fourfold 
vacua, hep-th/9610195; 
M. Bershadsky, A. Johansen, T. Pantev and V. Sadov, F-theory, geometric engineering and N = 1 
dualities. hep-th/96 12052. 

[6] A. Avram, M. Kreuzer. M. Mandelberg and H. Skarke, Searching for K3 fibrations, hep-th/9610154. 
[7] V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. 

Alg. Geom. 3 (1994) 493. alg-geom/9310003. 
[8] P. Green and T. Hiibsch, Calabi-Yau manifolds as complete intersections in products of complex 

projective spaces, Comm. Math. Phys. 109 (1987) 505; 
P. Candelas, A. Dale, C. L&ken and R. Schimmrigk, Nucl. Phys. B 298 (1988) 493; 
P. Green, T. Hiibsch and C. Lutken, All Hodge numbers of all CICYs, Class. Quant. Grav. 6 (1989) 10. 

[9] M. Kreuzer and H. Skarke, No mirror symmetry in Landau-Ginzburg spectra!, Nucl. Phys. B 388 (1992) 
I 13, hep-th/9205004. 

[IO] A. Klemm and R. Schimmrigk, Landau-Ginzburg string vacua, Nucl. Phys. B 411 (1994) 5.59, 
hep-th/9204060. 

[ 1 I] M. Kreuzer and H. Skarke, All abelian symmetries of Landau-Ginzbug potentials, Nucl. Phys. B 405 
(1993) 305. hep-th/9211047. 

[ 121 M. Kreuzer and H. Skarke, On the classification of reflexive polyhedra, hep-th/95 12204. 
[ 131 H. Skarke, Weight systems for toric Calabi-Yau varieties and reflexivity of Newton polyhedra, Mod. 

Phys. Lett. A 1 I (1996) 1637. 
[ 141 A. Klemm, B. Lian, S.-S. Roan and S.-T. Yau, Calabi-Ydu fourfolds for M- and F-Theory 

compactihcation, hep-th/9701023. 
[ 151 W. Fulton, lntroductian to Toric Varieties (Princeton University Press. Princeton, 1993). 
[ 161 T. Oda, Convex Bodies md Algebraic Geomerp (Springer, Berlin, 1988). 
[17] D. Cox, The homogeneous coordinate ring or a toric variety, J. Alg. Geom. 4 (1995) 17. 
[ 181 E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403 (1993) 159, hep-th/9301042. 
[ 191 C. Vafa, String vacua and orbifoldized LG models, Mod. Phys. Lett. A 4 (1989) I 169; 

Superstring vacua, HUTP-89/AOS7, preprint. 
(201 P. Candelas, X. de la Ossa and S. Katz, Mirror symmetry for Calabi-Ydu hypersurfaces in weighted p4 

and extensions of Landau-Ginzburg theory, Nucl. Phys. B 450 ( 1995) 267, hep-th/94 12 117. 
1211 A. Klemm, unpublished. 
1221 M. Reid, Canonical 3-folds, Proc. Alg. Geom. (Angers, 1979) (Sijthoff and Nordhoff, Alphen a/d Rijn). 
[23] V.V. Batyrev and D.I. Dais, Strong McKay correspondence, string-theoretic Hodge numbers and mirror 

symmetry, Topology 35 (1996) 901, alg-geom/9410001; 
V.V. Batyrev and L.A. Borisov, Mirror duality and string-theoretic Hodge numbers, Invent. Meth. 126 
( 1996) 183, alg-geom/9509009. 

[24] S. Sethi, C. Vafa and E. Witten, Constraints on low-dimensional string compactifications, Nucl. Phys. 
B 480 (1996) 213, hep-th 9606122. 

1251 0. Aharony, S. Yankielowicz and A.N. Schellekens, Charge sum rules in N = 2 theories, Nucl. Phys. 
B 4 18 ( 1994) 157, hep-th/93 11128. 

[26] P.S. Aspinwall, K3 surfaces and string duality, hep-th/96lll37. 
1271 D. Morrison and C. Vafa, Compactification on F-theory on CY 3-folds I, hep-th/9602 114. 



290 M. Krewx H. Skurke/Journal of Geornet~ and Physics 26 (1998) 272-290 

[28] M. Kreuzer and H. Skarke, On the classification of quasihomogeneous functions, Comm. Math. Phys. 
1 SO ( 1992) 137, hep-th/9202039. 

[29] A. Avram, M. Kreuzer, M. Mandelberg and H. Skarke. The web of Calabi-Yau hypersurfaces in toric 
varieties, in preparation. 


